
Illumination Aware MCMC Particle Filter for Long-Term Outdoor Multi-Object
Simultaneous Tracking and Classification

François Bardet, Thierry Chateau, Datta Ramadasan
LASMEA, Université Blaise Pascal
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Abstract

This paper addresses real-time automatic visual track-
ing, labeling and classification of a variable number of
objects such as pedestrians or/and vehicles, under time-
varying illumination conditions. The illumination and
multi-object configuration are jointly tracked through a
Markov Chain Monte-Carlo Particle Filter (MCMC PF).
The measurement is provided by a static camera, associ-
ated to a basic foreground / background segmentation. As a
first contribution, we propose in this paper to jointly track
the light source within the Particle Filter, considering it
as an additionnal object. Illumination-dependant shadows
cast by objects are modeled and treated as foreground, thus
avoiding the difficult task of shadow segmentation. As a
second contribution, we estimate object category as a ran-
dom variable also tracked within the Particle Filter, thus
unifying object tracking and classification into a single pro-
cess. Real time tracking results are shown and discussed
on sequences involving various categories of users such as
pedestrians, cars, light trucks and heavy trucks.

1. Introduction
Real-time visual tracking of a variable number of objects

is of high interest for various applications. In the recent
years, several works have addressed multiple pedestrian and
vehicle tracking [14]. In all these applications, real time
may be needed either because an immediate information is
required, or because recording images is not allowed, or be-
cause the amount of data is simply too huge to be recorded
and processed later. Vision has been chosen as it offers a
large measuring range, required by several surveillance ap-
plications: about 200 meters for traffic surveillance. Un-
fortunately, this benefit also causes deep object appearance
scale changes. In addition, in traffic surveillance, target ob-
jects belong to various classes, such as pedestrians, cycles,
motorcycles, light vehicles, light trucks, or heavy trucks.

The tracker is thus required to deal with various target 3D
sizes, and with various target projection 2D sizes, due to
heavy perspective effect.

In outdoor environment, shadows cast by opaque objects
interfere with object segmentation and description. This de-
creases tracking accuracy as object estimate may be shifted
towards its shadow. Moreover, it yields tracking failures as
the tracker may instantiate a ghost candidate object upon a
cast shadow. Both failures have been described in the lit-
erature, [10, 11] among others. However, shadows cast by
objects also feature relevant information about object itself,
offering the opportunity to increase its observability. For
these two reasons, cast shadows have to be taken into ac-
count to improve visual tracking performance [11]. A sur-
vey and benchmark of moving shadow detection algorithms
has been published in [10]. Nevertheless, segmenting the
image into three classes (background, objects, shadows cast
by objects) is a very challenging step, yielding authors to
incorporate spatial and temporal reasonning into their seg-
mentation methods.

Reversible Jump Markov Chain Monte-Carlo Particle
Filter (RJ MCMC PF) has become a popular algorithm for
real-time tracking of a varying number of interacting ob-
jects, as it allows to smartly manage object interactions as
well as object enter and leave. The benefit of MCMC PF
is that the required number of particles is a linear function
of the number of tracked objects, when they do not interact.
More computation is only required in case of object interac-
tion (i.e. occlusion). This technique has been proposed and
successfully used for jointly tracking up to 20 ants from a
top view [5], or for tracking several pedestrians in a multi-
camera subway surveillance setting [13].

In this paper, we address a mono-vision infrastructure-
located real-time multi-object joint tracker and classifier.
The core of the tracker is based on a RJ MCMC PF algo-
rithm inspired of [5, 13] and extended to jointly track and
classify objects and light source. Moreover, considering the
difficulty to compute a reliable low level shadow segmen-
tation, we choose to use a basic background / foreground
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Figure 1. Infinitely distant light source and object cast shadow over
the ground, assumed to be horizontal and defined by xG and yG.
Light source position angles (azimut φn

t , and elevation ψn
t ) are

relative to the local ground reference.

segmented image as an observation. In [9], cast shadow is
modeled using a 3-D object model, with a hand-defined sun
position. We extend this approach to allow the RJ MCMC
PF to automatically and continuously track sunlight esti-
mate, allowing long-term outdoor tracking. The light source
is modeled and updated over time within the particle filter,
in order to manage slow but strong illumination changes
caused by clouds and sun position dynamics. In section
2, we introduce joint light source and multi-object track-
ing. The observation likelihood is described in section 3,
focusing on cast shadow representation. Object interaction
weight is described in section 4. Finally, tracking results are
reported and discussed in section 5.

2. Multi-Object MCMC PF
2.1. State Space

In an illumination aware visual object tracking, the sys-
tem state encodes the configuration of the perceptible ob-
jects as well as illumination data: Xn

t = {lnt , Jn
t ,xj,n

t }, j ∈
{1, ..., Jn

t }, where lnt = {ξn
t , φn

t , ψn
t } defines the illumina-

tion hypothesized by particle n at time t, n ∈ {1, ..., N},
where N is the number of particles. More precisely, ξn

t is a
binary random variable hypothesizing sunlight to be broken
by a cloud or not, while φn

t and ψn
t are continuous random

variables respectively standing for sun azimut and elevation
angles, as illustrated on figure 1. When sunlight is bright
(unbroken), object shadows are assumed to be cast onto the
ground or other objects. Jn

t is the number of visible objects
for hypothesis n at time t, and each object j is defined by:
xj,n

t = {cj,n
t ,pj,n

t ,vj,n
t ,aj,n

t , sj,n
t }. Object j category at

iteration n is given by cj,n
t , a discrete random variable be-

longing to object category set, C={pedestrian, motorcycle,
light vehicle, light truck, heavy truck} for instance.

Objects are assumed to move on a planar ground. Abso-
lute position of candidate object j in particle n at time step t
is defined by pj,n

t = (xj,n
t , yj,n

t , ρj,n
t ), with object center of

gravity position xj,n
t and yj,n

t , and yaw angle ρj,n
t . Object

j velocity and acceleration are described by vj,n
t and aj,n

t ,
with magnitude and orientation. Object shape is modeled by
a cuboid with dimension vector sj,n

t . Considering the sun to
be a unique infinitely distant light source allows to very sim-
ply cast hypothesis object shadows over the ground. Never-
theless, the method can be extended to one or more finitely
distant light sources.

2.2. MCMC PF for Multi-Object Tracking

Let Z1:t the past observation sequence. Particle Filters
approximate the posterior p(Xt|Z1:t) with N samples Xn

t ,
n ∈ {1, ..., N} at each time step. As the posterior is dy-
namic, samples have to be moved at each time step. Is-
ard et al. [6] proposed a sampling strategy known as SIR
PF (Sequential Importance Resampling Particle Filter), and
a monocular Multi-Object Tracker (MOT) based on it [3],
where the posterior is resampled at each time step by an
importance sampler. This method draws new samples by
jointly moving along all the state space dimensions. The
required number of samples and the computation load thus
grow as an exponential of the space dimension, as focused
in [12]. As a result, it cannot track more than 3 persons. To
overcome this limitation, it is necessary to draw samples by
only moving within a subspace of the state space. Khan et
al. proposed the MCMC PF [4], replacing the importance
sampler with a MCMC sampler, according to Metropolis-
Hastings algorithm [7]. The chain is built by markovian
transitions from particle Xn−1

t to particle Xn
t via a unique

new proposal X∗, which may be accepted with probability
α defined in 1. If refused then Xn

t is a duplicate of Xn−1
t .

α = min

(
1,

π∗P (X∗|Z1:t−1)Q(Xn−1
t )

πn−1
t P (Xn−1

t |Z1:t−1)Q(X∗)

)
(1)

In eq. 1, π∗ = P (Zt|X∗) and πn−1
t = P (Zt|Xn−1

t ) are
likelihoods for observation Zt under states X∗ and Xn−1

t ,
as detailed in section 3, q(X) is the proposal law for a joint
configuration X, w∗ = w(X∗) and wn−1

t = w(Xn−1
t )

are interaction weights detailed in section 4. As real ob-
jects do not behave independantly from each other, Khan
et al. proposed to include it within the dynamics model,
and showed that it can be moved out of the prior mix-
ture: p(X|Z1:t−1) ≈ w(X)

∑
n

∏
j p(xj

t |x
j,n
t−1), where

p(xj
t |x

j
t−1) is object j dynamics model. As MCMC sam-

pler is an iterative strategy, Khan et al. proposed to draw
new samples by only moving one object xj at a time, ac-
cording to 2. This is the keypoint of the method: at each
iteration, it lets the filter operate within object j subspace.

Q(X∗|Xn−1
t ) ∝

{
Q(xj∗

t ) if X\j∗ = X\j,n−1
t

0 otherwise
(2)



where X\j is joint configuration X without object j, and
q(xj∗

t ) is object j proposal law, whose approximation is:

q(xj
t ) ≈

1
N

N∑

n=1

p(xj
t |x

j,n
t−1),∀j ∈ {1, .., Jn−1

t } (3)

The required number of particles thus is only a linear func-
tion of the number of tracked objects, when they do not in-
teract. We adopt all the previous features.

2.3. Variable Number of Objects
To allow objects to enter or leave the scene, Khan et al.

extended their MCMC PF to track a variable number of ob-
jects. For that purpose, the sampling step is operated by a
RJ MCMC sampler (Reversible Jump Markov Chain Monte
Carlo) [2], which can sample over a variable dimension
state space, as the number of visible objects may change.
This sampler involves the pair of discrete reversible moves
{enter, leave} in order to extend the proposal law q(X),
thus allowing the state to jump towards a higher or lower
dimension subspace [5, 12]. This sampler can approximate
p(X∗|Z1:t) if the acceptance ratio α is computed accord-
ing to 1, involving evaluations of the proposal law q(X) for
X∗ and Xn−1

t . This leads to move-specific acceptance ratio
computations, as shown in [5], and we use the same compu-
tations. In order to get time consistency, they also propose
the pair of discrete reversible moves {stay, quit}. Stay al-
lows to recover an object j which was present in the time
t − 1 particle set, and no more is in the current particle at
time t. Quit proposes an object j which was not present
in the time t − 1 particle set, and is in the current particle
at time t, to quit the scene. Though this pair of moves is
devoted to object presence time consistency, it cannot cope
with long duration occlusions or poor observation. For that
reason, we do not use it and introduce object vitality, a con-
tinuous variable collecting the past likelihoods of each ob-
ject, along iterations and time steps. It is integrated over
all iterations of each time step, as detailed in appendix, and
is used to drive object leave moves detailed in section in
section 2.4. We extend the approach to reversible sun pa-
rameters and object category updates, yielding the follow-
ing move setM ={object enter, object leave,object update,
sun enter, sun update} denoted {e, l, u, se, su} (sun leaves
are treated with object leaves). Object category is tracked
by proposing it to changes among set C ={pedestrian, mo-
torcycle, light vehicle, light truck, heavy truck} according
to a transition matrix. This move extends the MCMC PF
framework to object classification functionality. In addition
to processing a geometry-based classification within the RJ
MCMC PF, it is of high interest when object classes have
obviously different dynamics such as a trailer versus a light
vehicle on a windy road or a pedestrian versus a vehicle.
In other words integrating object class as a random variable

within the RJ MCMC PF allows object time dynamics to
contribute to object classification as well as object shapes.

2.4. Data-Driven Proposal Moves
In order to improve filter efficiency, object enter quota

ρe is driven by observation Z and particle Xn−1
t at each

iteration, according to eq. 12. Each object j leave quota
ρl(j) depends on its vitality, according to eq. 25. Object j
update, sun update, and sun enter quota are set to constant
values : ρu(j) = 1, ρsu = 0.1, and ρse = 0.02. Move m
probabilities Pm are computed from these quota, according
to eq. 4, where J is the number of objects in particle Xn−1

t .

Pm =
ρm

ρe+Jρu+
∑

j∈{1,.,J,s} ρl(j)+ρse+ρsu
,∀m ∈M

(4)
Object Enter: proposes a new object to enter with proba-
bility Pe, yielding joint configuration X∗ = {Xn−1

t ,xj∗}.
It is given a unique index j, initial dimensions, and initial
vitality Λj

t = Λ0. Acceptance rate is:

αe = min

(
1,

π∗w∗P (X∗|Z1:t−1)Pl(j)
πn−1

t wn−1
t P (Xn−1

t |Z1:t−1)PeQ(xj∗)

)

(5)
where object xj∗ is drawn from the false background distri-
bution Ifb (eq. 11), such that its projection fits Ifb blob.
Object j Leave: proposes to withdraw object j from Xn−1

t

with probability Pl(j), yielding the new joint configuration
X∗ = {Xn−1

t \ xj,n−1
t }. Acceptance rate is:

αl = min

(
1,

π∗w∗P (X∗|Z1:t−1)PeQ(xj,n−1
t )

πn−1
t wn−1

t P (Xn−1
t |Z1:t−1)Pl(j)

)
(6)

Object j Update with probability Pu. Proposes to change
xj,n−1

t class according to a transition probability matrix.
Randomly choose xj,r

t−1, an instance of object j from time
t − 1 chain. Draw xj∗

t from dynamics model p(xj
t |x

j,r
t−1)

and build X∗ = {X\j,n−1
t ,xj∗

t }. Object dynamics model
is relative to object category (see section 5 for examples).

αu = min

(
1,

π∗w∗

πn−1
t wn−1

t

)
(7)

Sun Enter: proposes sunlight to become bright with prob-
ability Pse. Acceptance rate is:

αse = min

(
1,

π∗w∗P (X∗|Z1:t−1)Pl(s)
πn−1

t wn−1
t P (Xn−1

t |Z1:t−1)Pse

)
(8)

Sun Leave: proposes sunlight to become cloudy with prob-
ability Pl(s). Acceptance rate is:

αsl = min

(
1,

π∗w∗P (X∗|Z1:t−1)Pse

πn−1
t wn−1

t P (Xn−1
t |Z1:t−1)Pl(s)

)
(9)

Sun Update with probability Psu. Randomly chooses a sun
position instance lrt−1. Draw l∗ from sun dynamics laws
(18) and (19). Acceptance rate is given by 7.



3. Observation Likelihood Function
In this section, we compute P (Z|X), the likelihood for

observation Z, given the joint multi-object configuration X.
Though we commonly use a multi-camera setting, a mono-
vision setting will be considered in this section, for sake of
simplicity. From the current image (Fig.2-a), and a back-
ground model (Fig.2-b), a foreground binary image IF (g)
such as in Fig.2-d is computed, where g denotes a pixel
location. We use Σ − ∆ algorithm [8], which efficiently
computes an on-line adaptive approximation of background
image temporal median and covariance, thus coping with
outdoor illumination changes and noises for a low computa-
tional cost. On the other hand, each object hypothesized by
particle X is modeled as a cuboid with shape defined in sec-
tion 2.1. The convex hull of its vertice projections is com-
puted. If sunlight is unbroken, its cast shadow vertices are
computed, and the corresponding convex hull also is com-
puted. A binary mask image IM (g,X) is computed, with
pixel g set to 1 if it is inside at least one of the convex hulls,
else to 0, as drawn in Fig.2-c. Similarity image IS(g,X) is
then computed (10), as well as false background image (11)
used to drive object enter proposals through (12), where So

is object projection prior area.

IS(g,X) =
{

1 if IF (g) = IM (g,X),
0 otherwise ∀g (10)

Ifb(g,X) = IF (g)&IM (g,X),∀g (11)

ρe =
1
So

∑

g

Ifb(g,X) (12)

The observation likelihood P (Z|X) is computed as (13):

p(Z|X) =

(
1
S

∑

g

IS(g,X)

)βj

, (13)

where βj is computed according to object j projection area,
according to the method detailed in [1]. This method is
of high interest as it produces an observation likelihood
that fairly tracks objects whatever their distance, and that
fairly compares occluded and unoccluded objects. Both are
highly demanded by video surveillance applications, such
as highway or subway surveillance, where cameras cannot
be located on a very elevated point, yielding deep occlu-
sions and scale changes due to projection. Moreover, this
method allows MCMC PF to operate with acceptance rate
α to be tuned to a target value, thus improving its efficiency.

4. Multi-Object Interaction Weight
As the foreground likelihood function allows fully oc-

cluded objects to survive, we must prevent them from get-
ting stuck behind another object. For pedestrian tracking,
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Figure 2. Background subtraction and residual images, with pro-
jected candidate objects. For readability, their projective polygons
are approximated as rectangles. (a): raw color image with bound-
ing object rectangles. (b): background model. (c): binary hy-
pothesis image IM (g,X). (d): binary foreground image IF (g).
(e): binary false foreground image, i.e. pixels covered by the pro-
jection of at least one object, but classified as background. (f):
binary false background image Ifb(g,X), i.e. pixels not covered
by any candidate object, but classified as foreground. Few points
randomly sampled (red stars), to drive new object enter proposals.

[13] proposes to use a Mahalanobis distance rather than
an Euclidean distance to model distances between pedes-
trians. We also compute an inter-object anisotropic weight
based on Mahalanobis distance. This is mostly required
in the case of vehicle tracking, because their lengths are
much larger than their widths, and their interactions also
are highly anisotropic, as 2 nearby vehicles are more likely
to ride on 2 adjacent lanes rather than on the same lane.
Moreover, the interaction between two vehicles depends on
their dimensions. This is modeled by computing object in-
teraction weight w as a function of an anisotropic distance
between every pair of hypothesized vehicles. Both condi-
tions are met approximating each object as a bivariate gaus-
sian mass distribution, with covariance matrix featuring sec-
ond order mass moments. Inter-vehicle distance then is:
dij = (∆T

ij .(Ci.Cj)−1.∆ij)1/2, where ∆ij is the 2D po-
sition difference vector between vehicles i and j, Ci and Cj

their respective covariance matrices. Object pair interaction



weight then is computed according to equation (14):

wij =
(
1 + e−ks.(dij−ds)

)−1
, (14)

yielding a weight near 1 for far objects, and near 0 for
materially impossibly close objects. ds is the inter-vehicle
distance corresponding to the sigmoid inflection parameter,
and ks is adjusted to tune curve slope around ds. Interaction
weight for particle X involving Jn

t objects then is:

w(X) =
Jn

t −1∏

i=1

Jn
t∏

j=i+1

wij . (15)

5. EXPERIMENTS AND RESULTS
5.1. Datasets and Methodology

Tracker performance is assessed over both synthetic and
real sequences. Datasets have been sampled from two dif-
ferent fields of applications: pedestrian tracking and high-
way vehicle tracking. Pedestrian tracking experiments are
devoted to assessing the tracker ability to track more than
10 objects while coping with variable sunlight conditions.
Highway vehicle tracking experiments are devoted to as-
sessing the tracker ability to simultaneously track and clas-
sify vehicles such as cars, light trucks and trailer trucks,
while also complying with time-evolving sunlight. As we
want our tracker to comply with poor acquisition data, real
sequences are provided by low-quality non-calibrated web-
cams with a 320×240 pixel resolution and a high compres-
sion rate. Moreover, projection matrices have been approx-
imated by hand. Target objects located within a selected
tracking area (defined in the 3-d world and overplotted with
green lines on figures 3, 4 and 5) are to be tracked and clas-
sified. We propose to assess the proposed method perfor-
mance over four criteria:

• Tracking rate θT = 1
Jt

∑
t,j δT (t, j) with δT (t, j) = 1

if target j is tracked at time t, else 0. Jt =
∑

t jt, with
jt the number of objects in the tracking area.

• Classification rate θC = 1
Jt

∑
t,j δC(t, j) where

δT (t, j) = 1 if target j class is correct at time t, else 0.

• Ghost rate θG = 1
Jt

∑
t,j δG(t, j) where δG(t, j) is the

number of ghosts i.e. candidate objects over no target.

• Position average error εT = 1
Jt

∑
t,j(δ

T
p .δp)−1, with

δp = pj,e
t −pj,gt

t , where pj,e
t is object j estimated po-

sition at time t, pj,gt
t is object j position ground truth.

Four methods are assessed according to θT , θC , θG, εT :

• MOT - Multi Object Tracker: an implementation of
RJMCMC algorithm with one category (object size
noise has been increased in order to match different
size objects) and with no light estimation.

• MOTS - Multi Object Tracker and Sun: an implementa-
tion of RJMCMC algorithm with one category (object
size noise has been increased in order to match differ-
ent size objects) and with light estimation.

• MOTCn - Multi Object Tracker and Classifier: an im-
plementation of RJMCMC algorithm with n categories
and with no light estimation.

• MOTCnS - Multi Object Tracker and Classifier with
Sun: an implementation of RJMCMC algorithm with
n categories and with light estimation.

5.2. Implementation
Two configuration proposals and their likelihoods are

computed in parallel on each processing core, through
threads supplied by the Boost C++ Libraries1. Code is writ-
ten using NT 2 C++ Library2. We use a 3GHz Intel E6850
Core 2 Duo processor PC, with 4Go RAM, running Linux.
All experiments presented below have been done at video
real time (i.e. 25 fps), over mono-vision 320× 240 frames.
The filter number of particles is set to N = 200.

5.3. Pedestrian tracking under variable sunlight
Datasets are sampled from pedestrian tracking se-

quences. Candidate pedestrians are controlled in velocity:

p(vt|vr
t−1) = N

(
vr

t−1, diag
([

σ2
m, σ2

a

]))
, (16)

where σm and σa are the respective velocity magnitude and
orientation standard deviations. Acceleration is not used.
Dynamics laws then yield position x∗t . Shape is updated
according to equation (17), where σs is object shape stan-
dard deviation, and I3 the 3-dimension identity matrix. Sun
dynamics is defined by (18) and (19), where σφ and σψ re-
spectively are sun azimut and elevation standard deviations.

p(st|sr
t−1) = N (sr

t−1, σ
2
sI3) (17)

p(φt|φr
t−1) = N (φr

t−1, σ
2
φ), ∀r ∈ {1, ..., N} (18)

p(ψt|ψr
t−1) = N (ψr

t−1, σ
2
ψ), ∀r ∈ {1, ..., N} (19)

Synthetic Sequences: Cuboid approximated pedestrians
randomly move on a 12x15 meter wide tracking area, un-
der a simulated time-evolving bright sunlight with elevation
ψ = 0.8 rad and azimut increasing from φ = 0 to φ = π
rad in 1000 frames. This is much faster than real world
sun moves. Figure 3 illustrates tracking operation, showing
the benefit of shadow modeling. Table 1 reports results for
MOT and MOTS, and shows that modeling cast shadows
decreases ghost rate and improves tracking accuracy.

1http://www.boost.org
2Numerical Template Toolbox. http://nt2.sourceforge.net
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Figure 3. Excerpts from synthetic pedestrian tracking under time-
evolving sunlight azimut. Estimated object cuboids overplotted
in green lines. Left column: no shadow model. Right column:
estimated cast shadow overplotted in red.

Table 1. Tracking cuboid approximated pedestrians on synthetic
scenes, under time-evolving sunlight, and under an alternation of
bright and cloudy sunlight: sun state changes every 200 frames.

bright sun sun & clouds
MOT MOTS MOT MOTS

θT (%) 84.7 89.7 84.1 87.0
θG (%) 5.7 4.9 5.1 4.3

error (m) 0.91 0.63 0.82 0.70

Real Sequence: A short sequence with clouds and sun
yielding fast illumination changes. Figure 4 frame #786 il-
lustrates three pedestrians being tracked while sunlight is
estimated to be cloudy (no estimated cast shadow). Few
frames later, as sunlight becomes brighter the tracker esti-
mates it to appear at frame #823 and to remain bright until
the end. The tracker fails at estimating the two targets walk-
ing side by side and occluding each other over the whole se-
quence: it tracks both people as a unique pedestrian (#14),
due to lack of observability.

5.4. Vehicle tracking and classification
These experiments aim at assessing the tracker ability to

simultaneously track and classify vehicles such as cars, light
trucks and trailer trucks. Vehicles are controlled through
driver command proposals drawn from (20):

p(at|ar
t−1) = N

(
0, diag

([
σ2

l , σ2
t

]))
, (20)
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Figure 4. Excerpts from pedestrian tracking under time-evolving
sunlight conditions. Estimated cuboids overplotted in green lines
with estimated cast shadow in red when sunlight is bright.

Table 2. Two-class synthetic highway vehicle tracking and classi-
fication. Tracking rate θT (%) / Classification rate θC (%) / Ghost
rate θG(%). Average position error per vehicle in meters.

MOT MOTS MOTC2 MOTC2S
light vehicles . . 59/54/0 90/89/11
trailer trucks . . 86/86/0 90/89/0
total 52/22/17 51/25/16 58/53/0 90/89/11
error (m) 6.17 5.80 2.76 2.00

where σl is driver longitudinal acceleration standard devia-
tion, σt is driver steer angle standard deviation, condition-
ning transversal acceleration. Bicycle model equations as
defined in [1] then are applied to object j. Dynamics laws
then yield velocity v∗t and position x∗t .

Synthetic Sequences: They involve car and truck cuboid
approximates on a three-lane highway, under bright sun-
light. Table 2 reports results, showing that both classifica-
tion and shadow modeling independently improve tracking.
Best results are reached when both are activated.

Real Sequences: Real traffic sequences involving light
vehicles, light trucks, and trailer trucks on a four-lane high-
way, including a highway entry lane, under variable sun-
light. For real traffic tracking, a 3-class classification is
necessary to take into account the three major classes of
vehicles. Due to tracked object size wide range, meth-
ods without classification (MOT and MOTS) require vehi-
cle shape dynamics σs to be dramatically increased, to let
objects fit targets. Such a strategy cannot operate in pres-
ence of deep occlusions. To let them serve as reference any-
way, as well as to let hand-made ground truth be affordable,
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Figure 5. Frame #203 from real traffic tracking. Top row: no clas-
sification, vehicle estimated cuboids overplotted in green lines.
Bottom row: classification in 3 categories with light vehicle (resp.
light trucks and trailer trucks) estimated cuboids overplotted in
green lines (resp. magenta and orange). Left: without cast shadow
model. Right: with cast shadow modeling, overplotted in red lines.

Table 3. Three-class real highway vehicle tracking and classifica-
tion. Tracking rate θT (%) / Classification rate θC (%) / Ghost rate
θG(%). Average position error per vehicle in meters.

MOT MOTS MOTC3 MOTC3S
light vehicles . . 67/64/2.6 67/67/0.05
light trucks . . 83/36/1.0 92/86/3.7
trailer trucks . . 93/83/0 100/100/2
total 51/45/0 60/51/0 72/62/2.5 70/70/3.1
error (m) 6.80 6.22 6.13 5.40

we choose a sequence with light traffic, but involving all
categories of vehicles. Figure 5 illustrates that both multi-
category classification and cast shadow modeling improve
tracking. MOT and MOTS typical failures are: two objects
tracking a unique target (MOTS) or poor tracking accuracy
(MOT). Without cast shadow modeling, the system fails at
tracking very differently sized objects: it explains truck cast
shadow pixels classified as foreground with a ghost car (#7
on MOTC3 and #8 on MOTC3S). Modeling cast shadow
explains these foreground pixels (MOTC3S). Moreover, fur-
ther cars are more accurately located when shadow is mod-
eled (MOTS and MOTC3S), as their shadows provide clues
concerning their longitudinal position. Table 3 reports re-
sults and confirms section 5.4 analysis: both classification
and shadow modeling improve tracking, with best results
when both are activated.

6. Conclusion and Future Works
We have proposed a generic illumination-aware frame-

work to simultaneously track and classify multiple objects
into various classes in real time. The system can be operated
in monovision or with a multi-camera setting. It is wholy in-
tegrated within a RJ MCMC Particle Filter framework. To
make this possible, illumination is integrated into the global
configuration state-space, and tracked as well as objects.
Experiments show that joint object and sunlight estimation
improves tracking, both decreasing false positives and ob-
ject position error. We also have proposed to include ob-
ject category as a discrete random variable to be estimated
by the filter, extending RJ MCMC PF framework to object
classification functionnality. Experiments show that simul-
taneously tracking and classifying improves tracking as it
proposes multiple geometric models, thus allowing better
model fitting. This unified approach also is of high interest
as it allows tracking and classification to cooperate through
object class specific dynamics. This functionality might be
used to improve tracking and classification of objects with
similar geometric models, but with different dynamics mod-
els, such as cyclists and pedestrians for instance. As this
tracker is designed to be generic, it is based on low level
information (simple background segmentation), and com-
plies with low-quality acquisition data. There is undoubt-
edly room for improvement, adding object ad-hoc features
in the likelihood computation. The work presented in this
paper deals with a unique illumination source, well suited to
model sun illumination. It can easily be extended to multi-
ple illumination sources, and to ground reflection modeling
suitable for indoor lighting or outdoor wet conditions.

Appendix: Vitality-Driven Leave Moves
Object and sun vitalities, ranging from 0 to 1, are up-

dated by the same process. At iteration n of time t, we
compute object j false foreground ratio f j,n

t :

f j,n
t =

1
|Rj,n

t |

∑

g∈Rj,n
t

IF (g),∀j ∈ {1, ..., Jn
t , s} (21)

where s denotes sun as an object. Rj,n
t denotes image re-

gion covered by the projection convex hull of each object
but the sun (∀j ∈ {1, ..., Jn

t }). For the sun (j = s), Rj,n
t

is the region covered by the union of all object cast shadow
projections. Object j vitality increment λj

t is computed (22)
over the whole particle set, as a sum of sigmoids of f j,n

t :

λj
t = kd

N∑

n=1

e−kr.(fj,n
t −rf ) − 1

e−kr.(fj,n
t −rf ) + 1

,∀j ∈ {1, .., Jn
t , s} (22)

where rf is the inflection parameter of false foreground rate
curve (i.e. the value of f j,n

t yielding an increment equal to
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Figure 6. Vitality increment λj
t versus object j false foreground

rate f j,n
t , in monovision, with kd = 1, rf = 0.6 and kr = 10.

0), and kr is the curve steepness parameter. Equation (22)
produces a positive increment if f j,n

t < rf , else negative,
allowing object vitality to compile the history of object j
likelihoods along past iterations and time steps. Vitality dy-
namics coefficient kd is computed in equation (23):

kd = (1− Λ0)(ns.C.N)−1, (23)

where Λ0 denotes object initial vitality, ns denotes the num-
ber of frames an object with maximal vitality can survive
total invisibility (generally due to total occlusion by the
background). This parameter allows the user to adjust vital-
ity dynamics, depending on the duration of possible occlu-
sions. Each object vitality is finally updated for time t + 1:

Λj
t+1 =

{
min(Λj

t + λj
t , 1) if (j = s or zj)

max(Λj
t + λout, 0) otherwise

, (24)

where zj is a binary variable set to 1 if object j is in the
tracking area, else 0. In the latter case, its vitality is updated
by λout. The values chosen for experiments, reported in
table 4, yield the vitality increment illustrated on Fig. 6. At
each time step t, object j leave proposal rate ρl(j) is driven
by its own vitality, according to equation (25):

ρl(j) =
(
1 + ekv.(Λj

t−Λ0)
)−1

,∀j ∈ {1, .., Jn
t , s}. (25)

Sigmoid inflection parameter is chosen equal to Λ0, yield-
ing object enter and leave reversibility. Less leave propos-
als appear as object j vitality grows higher than Λ0, pre-
venting it from leaving the scene at once when poorly seg-
mented from background or deeply occluded. In this case,
vitality allows it to survive several images. kv is sigmoid
steepness parameter. The same mechanism stands for sun,
with slower dynamics driven by a higher ns (see table 4).
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