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Abstract: Object Tracking has become a recurrent problem in video-surveillance and is a important domain in computer
vision. It was recently approached using classification techniques and still more recently using boosting meth-
ods. We propose here a new object tracking method, based on Ensemble Tracking and integrating two main
improvements. The first one lies on the separation of the heterogeneous feature space into a set of homoge-
nous subspaces (modules) and on the application of an Ensemble Tracking-based algorithm on each module.
The second one deals with the new tracking problem induced by this separation by building a specific particle
filter, weighting each module in order to estimate both position and dimensions of the tracked object and the
linear combination of modular decisions leading to the most discriminative observation. Our method is tested
on challenging sequences. We prove its performance and we compare its robustness with the state of the art.

1 INTRODUCTION
Numerous works identify object tracking as a criti-
cal issue in many applications (Hu et al., 2004). We
herein define tracking as a two-step process which
aims at estimating the trajectory of moving object
from video sequences. The object is first detected,
and potential candidates are identified in each frame.
It is then tracked, and a specific candidate is tracked
all along the frames. Depending on the constraints
imposed, several algorithms are available (e.g. (Yil-
maz et al., 2006) for a review). We impose in this
article four constraints on the tracker: it has to be ro-
bust, real-time, usable from mobile cameras and able
to track pedestrians. We are thus only interested in
the following in points tracking and supervised learn-
ing based methods. Points tracking, in which the ob-
ject is represented with a few points, brings together
two methods widely used in the vision community:
Kalman and particle filters. Particle filters are very
efficient methods to track multiple objects, as they
can cope with non-linearities and multi-modalities in-
duced by occlusions and background clutter (Isard
and Blake, 1998; Okuma et al., 2004). Supervised
learning consists in inferring a function from super-
vised training data. The task of the supervised learner
is to predict the class label of unknown data using
only a given number of training samples. In the track-
ing community, the most popular supervised learning

methods include the direct construction of an inter-
classes frontier (e.g. SVM) or the combination of
classifiers improving classification performance. In
the context of pedestrian tracking, boosting, and es-
pecially Adaboost (Freund and Schapire, 1996), was
proved to be very efficient (Grabner et al., 2006). We
propose in this article to combine point tracking and
supervised learning methods. More precisely, classi-
fiers are trained with Adaboost on homogeneous fea-
ture spaces, and the classification decisions are used
by a particle filter specially designed for the appli-
cation. Some works are close to ours (Avidan, 2007;
Tang et al., 2007; Nickel and Stiefelhagen, 2008), and
we introduce here a modular version of ET (Ensemble
Tracking) (Avidan, 2007) combined with a Markov
chain Monte Carlo particle filter (MCMC). The key
idea is to jointly track the object position/scale and the
relevance of each observation module with a sequen-
tial Bayesian filter. In the following, we introduce our
contributions, consisting first of a modular version of
ET, and then on the introduction of a MCMC parti-
cle filter estimating both position and dimensions of
the object to track, and weights of classifiers stem-
ming from the modular ensemble tracking. We finally
presents and analyzes results of our algorithm on syn-
thetic and challenging video sequences.



2 MC2-MET ALGORITHM
The ET algorithms is fully described in (Avidan,
2007), In this article tracking is performed on a het-
erogeneous feature space, and features used in can be
reliable or not, and may be not discriminative enough
and therefore may lead to a possible high global
Bayesian error. In order to avoid these problems, we
herein propose to work on several homogeneous fea-
ture spaces and to track the object using an ET-like
algorithm on each of these spaces (called modules,
one confidence map per space based on a consistent
feature vector). Decisions are then combined into a
unique one, managing their complementarity, reliabil-
ity and their redundancy. Using one ET strong classi-
fier per space allows an independent decision on each
homogeneous feature space to be taken and therefore
gives the possibility to handle undiscriminative data
that may hinder the final decision stage. Splitting the
feature space strongly modifies the objective of the
tracking process: a tracking algorithm now has to es-
timate a hidden state composed on the one hand of
the position and the dimensions of the object, and on
the other hand of the linear weights of the module de-
cisions, leading to the most discriminant observation.
We therefore propose to use a specific particle filter
jointly managing both the positions and dimensions
of the object and the weights of the modules.
2.1 Synoptic view of MC2-MET
The feature space is now composed of several homo-
geneous subsets (modules), composed of feature vec-
tors representing pixel characteristics (e.g. colorimet-
ric, texture-based, contour-based modules...) and the
definition of relevant modules is application-based.
For each of the modules, a strong classifier is built,
using the ET algorithm. The set of resulting confi-
dence maps allows several distinct object positions to
be computed,that are combined into a single one using
a specific particle filter. The synoptic diagram of the
MCMC Modular Ensemble Tracking (MC2-MET) is
proposed in figure 1, and each step is detailed below.

The initialization step relies on the initialization of

Figure 1: Synoptic view of the proposed algorithm.
ET, for each strong classifier of each module, but only

a subset of the training examples is used. We indeed
propose a sampling strategy of the training set to re-
duce the computational cost, adapted to each module:
for a module that does not necessitate specific extrac-
tion rules (e.g. a colorimetric module), pixels are ran-
domly chosen according to a Gaussian pdf, such as
the number of pixels extracted from inside and ouside
the region of interest are the same. The training zone
is thus dynamically chosen and several background
patterns can thus be managed. For modules with spe-
cific extraction rules (e.g. the histogram of oriented
gradients module) , an adapted heuristic is generated.

2.2 Particle filter
A particle filter is a sequential Monte Carlo method
used for Bayesian filtering. The particles are propa-
gated through time by Monte Carlo simulation to ob-
tain new particles and weights (usually as new infor-
mation are received), hence forming a series of pdf
approximations over time. Using the training sets of
modules, a strong classifier is built for each of the
modules. The set of strong classifiers is then used
at the next iteration to build a confidence map for the
object position. The particle filter aims at maintain-
ing through time a set of particles jointly managing
the position and dimensions of the object, and the
weights to apply to the linear combination of the con-
fidence maps in order to attain the best observability.
The most popular particle filter algorithm is known as
SIR algorithm (Isard and Blake, 1998). However, the
number of required particles grows as an exponential
of state-space dimension. Recent works proposed a
MCMC space exploration strategy to overcome this
limitation (Khan et al., 2005). We propose a simi-
lar algorithm to efficiently explore the space state in a
realtime framework. The observation function is de-
fined according to the confidence maps built from the
current image. A particle i at time t is modeled as a
specific rectangle centered in (xt

i ,y
t
i), with width wt

i
and height ht

i , surrounding the object and to a set of
weights (wt

i,m) for computing an unique confidence
map from a linear combination of M ones. Since the
score of the particle is computed from the confidence
maps of the modules, and since the sampling imposed
that these confidences are known for only a subset of
pixels, we constrained the particles to only represent
rectangles fully included in the image. We moreover
imposed rectangle to have a ”sufficient” size.
Propagation model: the particle based approxima-
tion of the state is achieved with a Markov Chain.
At iteration i of the Chain at time t, we propose a
marginal strategy to build the proposal sample from
the particle i− 1 of the Chain. A random choice
allows to consider if either position and dimensions
or the set of weights must be propagated. We then



propose 3 type of random propagation for the posi-
tion/dimensions information: an updating of position,
an updating of dimensions or both. Each type is asso-
ciated to a probability, and we empirically found that
values 0.75, 0.2 and 0.05 gave good results.
Obsevation model: the observation model is defined
as a likelihood function that gives a score ci to any
particle X t

i . This score is then used in the Metropo-
lis algorithm to infer if particle i will belong to the
final Markov chain. For each particle X t

i and each
confidence map (i.e. each module m), two classi-
fication scores are computed: the mean classifica-
tion score Sm|Ω1 inside the rectangle Ω1 surrounding
the object and related to the current particle, and the
Sm|Ω2 outside this rectangle but inside a region of in-
terest centered on (xt

i ,y
t
i) and three times larger. The

global score of module m for the position/dimensions
is then si,m = Sm|Ω1× (1−Sm|Ω2) and the score of the
particle is finally computed as the weighted sum of
si,m with weights wi,m. Since these scores are com-
puted from the confidence maps ct

m, we preprocessed
these maps (Platt, 1999) in order both to suppress out-
liers and to transform the classification margins of the
strong classifiers into calibrated probability values.
More precisely, let Ω be the set of pixels for which a
confidence value has been computed and VCU t

m(x,y)
the confidence value computed by the strong classifier
m at time t. The confidence value is given by:
ct

m(x,y) =
1

1+ exp(AmVCU t
m(x,y)+Bm)

,∀(x,y) ∈Ω

where Am,Bm are computed by optimizing a cross-
entropy function on the confidence map of m obtained
on the first image of the sequence. The proposed
particle is then accepted or rejected according to the
Metropolis Hasting rule.
Module updating: once the particle filter has been
applied, modules must be updated. We chose to ap-
ply the same updating process as in (Avidan, 2007)
on each strong classifier. We only kept the best K
strong classifiers at each iteration, based on the new
position determined by the Mean Shift algorithm on
the current image. We had to determine an unique
updating position from the set of positions included
in the different particles of the filter. Each pixel was
first assigned a score equal to the number of parti-
cles for which the corresponding surrounding rect-
angle included this pixel. Pixels were then consid-
ered as object pixels if their score was greater than
half the number of particles. In order to avoid the
drifting effect, the current sample pixels were used
together with sample pixels from the initial image.
For each module and each updating step, two sets of
labeled samples (initial and current) were available.
From these sets, four sample groups (2 positives, 2
negatives) were randomly built and each pair (pos-

itive/negative) was used to either update the strong
classifier or estimate Am and Bm.

3 RESULTS
MC2-MET was implemented in C++, on a PC
equipped with Intel R© Core 2 Duo E8500 3.16GHz
and 4Go of RAM DDR2. Several challenging video
sequences were used to demonstrate the efficiency
of MC2-MET algorithm, mainly extracted from the
CAVIAR and the PETS2001 database. Simulated,
homemade and available (Stalder et al., 2009) se-
quences were also used. Due to the 4 pages constraint,
we only present comparisons with the state of the art.

3.1 MC2-MET vs. Ensemble tracking
Since the basic principle or MC2-MET relies on
the ET algorithm, we first compared ET and our
method on 6 CAVIAR sequences (Browse4, Fight
OneManDown, TwoEnterShop2cor, OneStopMove-
NoEnter2cor, with different tracking objectives). For
both algorithms, RGB levels and HoG values were
computed in a 5× 5 neighborhood and rebinned in 8
classes. For ET, the feature vector was thus a 11D ;
for MC2-MET a 3D colorimetric feature vector and a
8D contour-based one were used. Table 1 presents a
comparative study. For each sequence and each algo-
rithm, the mean and standard deviation of Euclidean
distances between the center of the computed rectan-
gle and the ground truth are calculated, and the track-
ing status is reported (KO: target lost, OK: tracking
completed). ET lost the target for all the CAVIAR
videos showing a Shopping Center in Portugal (Seq.3
to 6). Quantitavive performances as well as target
tracking were always worse using ET, since this al-
gorithm supposes scale invariance: a change in object
scale creates some opportunity for ET to find a better
correspondance in other parts of the region of inter-
est. An analysis of the first sequence reveals that ET
can have results comparable to our algorithm when
the conditions are adequate (no great deformation, no
important change in scale, and no similar object near
the object to be tracked).The scale invariance does not
fully explain the the difference for sequences 3 to 6.
Since MC2-MET is modular, it allows a decision to be
taken on each feature space. When combining mod-
ule decision using the particle filter, MC2-MET builds
a final position + dimensions that can manage non rel-
evant information stemming from modules.

3.2 MC2-MET vs. classical approaches
We compared MC2-MET (using RGB and LBP mod-
ules) with classical tracking algorithms: online Boost-
ing (OB, (Grabner et al., 2006)), semi-supervised on-
line Boosting (SSOB, (Grabner et al., 2008)), and be-
yond semi-supervised Tracking (BSST, (Stalder et al.,



Table 1: Comparison of ET/MC2-MET tracking results.

Caviar Seq. Dist. ET/ MC2-MET (pixels) Status
1 5.92±2.97 /5.98±2.33 OK/OK
2 10.28±4.59 /5.83±2.43 OK/OK
3 34.40±19.47/9.00±5.23 KO/OK
4 92.09±89.42/9.99±4.30 KO/OK
5 29.83±29.27/ 9.54±4.73 KO/OK
6 16.64±5.28/ 13.73±6.85 KO/ OK

2009)), considered as references in the tracking com-
munity. The comparison was performed on a se-
quence proposed by the authors of the algorithms
(Figure 2), and sheds light on several points. OB pro-
posed an online version of Adaboost allowing clas-
sifiers to be constantly updated. SSOB proposes to
handle both the drifting effect and the change of ap-
pearance of the target. For this, authors combined
principles stemming from semi-supervised learning
and adaptative online boosting for feature selection.
BSST as for it dissociates detection, recognition and
tracking tasks in distincts classifiers. Images (1) cor-
responds to the beginning of the sequence. Initialisa-
tions are performed for all algorithms on the rectan-
gular texture object. Image (2) shows a deformation
of the object. If MC2-MET successfully tracks the ob-
ject, the 3 other algorithms fail: OB and SSOB drifted
to a more relevant candidate, and BSST considered
that the object disappeared (no yellow rectangle). The
method used to search objects in these algorithms is
more global than in MC2-MET, and object detection
is much more restritive and can lead to target looses
in case of strong deformation or occlusions.

(1) (2)

Figure 2: Tracking results for MC2-MET, OB, SSOB,
BSST. Line 1 gives the results of OB (cyan),SSOB (green)
and BSST(yellow). Line 2 gives results of MC2-MET(solid
rectangle: object, dashed one: region of interest).

4 CONCLUSIONS
We presented in this article a modular version of
Ensemble Tracking combined with a Markov Chain
Monte Carlo particle filter (MCMC). The key idea is
to jointly track the object position/scale and the rel-
evance of each observation module with a sequential

Bayesian filter. We proposed a special particle filter
(MCMC) that maintains over time a set of particles
corresponding to a hidden state composed of the po-
sition of the tracked object but also of all the weights
to be applied to different sub-decisions in order to
obtain compliance with this condition most discrim-
inating. We finally presented and analyzed results
of our algorithm on synthetic and challenging video
sequences recorded on fix and mobile cameras. The
comparaison versus other classical approches showed
a better accuracy and better robustness compared to
occlusions. Several extensions are now expected. We
now plan to extend the number and type of modules,
computing e.g. spatio-temporal or a priori modules
(silhouette). Modules also have to be managed in real-
time, so that relevant (resp. irrelevant) modules can be
automatically selected (resp. discarded) at each time.
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